RÉSINE TECHNIQUE

Tough 2000 Resin

Tough 2000 Resin pour des prototypes robustes

Tough 2000 Resin est le matériau le plus solide et le plus rigide de notre famille de résines fonctionnelles Tough et Durable. Choisissez Tough 2000 Resin pour fabriquer des prototypes de pièces solides et résistantes qui ne devront pas se plier facilement.

Prototypes solides et résistants

Gabarits et fixations robustes

Solidité et rigidité proches de l'ABS

FLTO2001

formlabs 😿

Préparé le 02.03.2020 **Révision** 01 le 02.03.2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

Propriétés du matériau Tough 2000 Resin

	MÉTRIQUE ¹		IMPÉRIAL ¹		MÉTHODE
	Pièce brute ²	Pièce post- polymérisée ³	Pièce brute ²	Pièce post- polymérisée ³	
Propriétés mécaniques					
Résistance à la rupture par traction	29 MPa	46 MPa	4206 psi	6671 psi	ASTM D 638-14
Module de traction	1,2 GPa	2,2 GPa	174 ksi	329 ksi	ASTM D 638-14
Allongement à la rupture	74 %	48 %	74 %	48 %	ASTM D 638-14
Propriétés en flexion					
Résistance à la flexion	17 MPa	65 MPa	2465 psi	9427 psi	ASTM D 790-15
Module de flexion	0,45 GPa	1,9 GPa	65 ksi	275 ksi	ASTM D 790-15
Propriétés de résistance aux chocs					
Résistance au choc IZOD avec entaille	79 J/m	40 J/m	1,5 ft-lbf/in	0,75 ft-lbf/in	ASTM D256-10
Résistance au choc Izod sans entaille	208 J/m	715 J/m	3,9 ft-lbf/in	13 ft-lbf/in	ASTM D4812-11
Propriétés thermiques					
Température de fléchissement sous charge à 1,8 MPa	42 °C	53 ℃	108 °F	127 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	48 °C	63 °C	118 °F	145 °F	ASTM D 648-16
Dilatation thermique	107 μm/m/°C	91 μm/m/°C	59 μin/in/°F	50 μin/in/°F	ASTM E 831-13

mapépiai 1

NETRICUES

Compatibilité avec les solvants

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures (%)	Solvant	Gain de poids après 24 heures (%)
Acide acétique à 5 %	0,71	Peroxyde d'hydrogène (3 %)	0,63
Acétone	18,82	Isooctane	0,03
Alcool isopropylique	3,7	Huile minérale, légère	0,13
Eau de Javel, ~5 % NaOCI	0,56	Huile minérale, lourde	0,17
Acétate de butyle	6,19	Eau salée (à 3,5 % NaCl)	0,56
Diesel	0,06	Hydroxyde de sodium (0,025 %, pH = 10)	0,61
Éther monométhylique de diéthylène-glycol	5,32	Eau	0,61
Huile hydraulique	0,08	Xylène	4,1
Skydrol 5	0,87	Acide fort (HCl concentré)	3,01

¹Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

 $^{^2}$ Les données ont été obtenues à partir de pièces brutes imprimées sur la Form 2, avec les paramètres Tough 2000 Resin à 100 $\mu\text{m},$ après lavage et séchage à l'air et sans postpolymérisation.

 $^{^3}$ Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres Tough 2000 Resin à 100 μm , et après post-polymérisation dans la Form Cure, à 80 °C pendant 120 minutes.